Authors:

Dahbia Talbi (Univ. of Montpellier - CNRS, Fr)

Wolf Geppert (Stockholm University, Se)

$$N_2H^+ + e^- \rightarrow N_2 + H$$
 (1) $\Delta Hr^{298} = -815.3 \text{ kJ mol}^{-1} \text{ ref (3)}$
 $\rightarrow NH + N$ (2) $\Delta Hr^{298} = -117.1 \text{ kJ mol}^{-1} \text{ ref (3)}$

Rate Coefficient Data $k = k_1 + k_2$

k/cm^3 molecule ⁻¹ s ⁻¹	<i>T /</i> K	Reference	
Rate Coefficient Measurements $k(T) = 7.5 \times 10^{-7}$ $k(T) = 1.7 \times 10^{-7} (T/300)^{-0.9}$ $k(T) = (1.0 \pm 0.1) \times 10^{-7} (T/300)^{-0.5 \pm 0.02}$ $k(T) = 2.4 \times 10^{-7}$ $k(T) = 2.98 \times 10^{-7} (T/300)^{-0.74}$ $k(T) = 2.74 \times 10^{-7} (T/300)^{-0.84}$	300 $95 - 300$ $10 - 300$ 300 $10 - 150$ $150 - 1000$	(1) (2) (3) (4) (6) (6)	
Branching Ratios $k_1 / (k_1 + k_2) = 0.36 ; k_2 / (k_1 + k_2) = 0.64$ $k_1 / (k_1 + k_2) \approx 0.95 \pm 0.02; k_2 / (k_1 + k_2) \approx 0.05 \pm 0.02$ $k_2 / (k_1 + k_2) = 0.08$		(3) (5) (6)	

Reviews and Evaluations

Comments

The first measurement of recombination rate coefficient for N_2H^+ was done by Mul and MacGowan (1) using a mearged-beam technique. They determined at 300 K a rate coefficient of 7.5 x10⁻⁷ cm³s⁻¹. Smith and Adams(2) using a flowing afterglow technique found a lower rate of 1.7 x 10^{-7} cm³s⁻¹. Later on, Geppert *et al.* (3) at CRYRING obtained a close value of 1 x 10^{-7} cm³s⁻¹ for the same temperature. More recently Poteyra et al. (4) with a revisited flowing afterglow technique measured for 300 K a slightly higher rate of 2.4 x 10^{-7} cm³s⁻¹. In the new experiment by Vigren et al. a similar reaction rate of 2.98 x 10^{-7} cm³s⁻¹ was determined fror T = 300K.

Geppert et al. (3) also determined a branching ratio with the CRYRING experiment and found that the NH + H channel was much larger than previously believed i.e 64% for NH + N and 36% for N₂ + H, but a later experiment (6) showed that this unexpected branching ratio was due to a contamination of the ion beam and a new branching ration was proposed (6) with for the NH + H channel a value of 7 %. This is in good agreement

with the branching ratio measured by Molek *et al.* (5) of less than 5% for the NH + N channel and the theoretical investigations of D. Talbi (7,8,9) showing from potential energy surface calculations for linear N_2H and N_2H^+ that the likely outcomes from the dissociative recombination N_2H^+ are the N_2 and H fragments, with N_2 in its first electronically excited state, while the NH + N channel should be minor because of inefficient curves crossing.

Since the rate constants of the dissociative recombination of N_2H^+ measured by the last flowing afterglow and storage ring experiments do not differ very much we recommend an intermediate value of $k(T) = (2.6 \pm 0.6) \times 10^{-7} (T/300)^{-0.84}$. For the branching ratio we also choose a value in agreement with both studies, namely 5 ± 2 % for the NH + N and 95 ± 2 % for the N_2 + H channel.

Preferred Values

Total rate coefficient (10 - 1000 K) $k(T) = 2.6 \times 10^{-7} (T/300)^{-0.84}$ Branching ratios $k_1 / (k_1 + k_2) = 0.95$ $k_2 / (k_1 + k_2) = 0.05$

Reliability $F_0 = 1.6$, g = 0

Comments on Preferred Values

References

- (1) P.M. Mul and J. WM. McGowan The Astrophysical Journal, **227**, L157 (1979)
- (2) D. Smith and N.G. Adams The Astrophysical Journal, **284**, L13 (1984)
- (3) W. D. Geppert, R. Thomas, J. Semaniak, A. Ehlerding, T. J. Millar, F. Österdahl, M. af Ugglas, The Astrophysical Journal, **609**:459 (2004)
- (4) V. Poterya, J. L. McLain, N. G. Adams, and M.
- Lucia J. Phys. Chem. A 109, 7181 (2005)
- (5) C. D. Molek, J. L. McLain, V. Poterya, and N. G. Adams, Phys. Rev. A **29**,1548 (2007).
- (6) E. Vigren, V. Zhaunerchyk, M. Hamberg, M.
- Kaminska, J. Semaniak, M. af Ugglas, M. Larsson, R.
- D. Thomas and W. D. Geppert, The Astrophysical Journal, **757**, 34 (2012)
- (7) D. Talbi, Chem. Phys. letters 332, 298 (2007).
- (8) D. Talbi, J. Phys. Conf. Ser. 192,012015 (2009).
- (9) D.O. Kashinski, D. Talbi, A.P. Hickman Chemical Physics Letters , 529 (2012) 10-15