Authors:

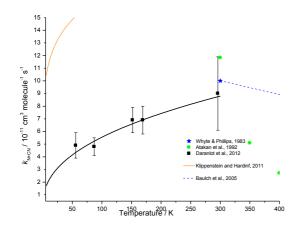
Ian Smith (University of Cambridge, UK)

Stephen Klippenstein (Argonne National Laboratory, Argonne, IL, USA)

Jean-Christophe Loison, Astrid Bergeat and Kevin M. Hickson (Univ. Bordeaux, France)

$$N(^4S) + CN(^2\Sigma^+) \rightarrow C(^3P) + N_2(^1\Sigma_g^+) \quad \Delta H^o_{298}(1) = -191.4 \text{ kJ mol}^{-1} (Baulch \text{ et al.}, 2005)$$

Rate Coefficient Data k


$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Comments
Rate Coefficient Measurements 1.0×10^{-10} $3.24 \times 10^{-13} \exp(1770/T)$ $8.8 \times 10^{-11} (T/300)^{0.42}$	300 300-534 56-296	Whyte & Phillips, 1983 Atakan <i>et al.</i> , 1992 Daranlot <i>et al.</i> , 2012	
Reviews and Evaluations $9.8 \times 10^{-10} T^{-0.40}$ 3.0×10^{-10} 3.0×10^{-10}	300-3000 298-2500 all temperatures	Baulch <i>et al.</i> , 2005 (p. 1139) UMIST database OSU website	
Theory $2.0 \times 10^{-10} (\text{T}/300)^{0.18}$	300-2500 10-400 50-300	Moskaleva & Lin, 2001 Klippenstein & Harding, 2011 Ma <i>et al.</i> , 2012	

Comments

The reactants correlate with triplet and quintet states, the products with only triplet states. As the reactants are only in S and Σ states there is no spin orbit coupling. Therefore, there is a constant electronic degeneracy factor of ca. 3/8. The three measurements of the rate coefficient at 298 K agree well. However, Atakan et al (2) suggests what seems like an extraordinarily steep negative dependence with T. L. B. performed Harding (for this datasheet) CASPT2(10e,9o)/CBS scans of the potential energy surface for this reaction. These calculations suggest that there is no barrier to formation of either NCN (exothermic by 435 kJ/mol) or CNN (also exothermic by 337 kJ/mol). Furthemore, the saddlepoint for transformation from NCN to CNN is well below the N + CN energy. So the reaction likely proceeds via addition to form both NCN and CNN followed by dissociation from the CNN complex to C + NN. However, even though very exothermic, either the isomerization or the dissociation could provide some sort of dynamical bottleneck especially at higher T. S. Klippenstein performed long-range TST calculations

S. Klippenstein performed long-range TST calculations (using CASPT2(8,8)/CBS potentials and so including not only dispersion but also contributions from the

dipole induced-dipole and other terms) leading to (including the 3/8 term from electronic degeneracy) $k(\text{CN+N}) = 2.0 \times 10^{-10} \ (\text{T/300})^{1/6} \ \text{cm}^3 \ \text{molecule}^{-1} \ \text{s}^{-1},$ which is about twice the experimental determinations (1 and $1.1 \times 10^{-10} \ \text{cm}^3 \ \text{molecule}^{-1} \ \text{s}^{-1}$) at room temperature. The CRESU data by Daranlot *et al.* (3) obtained at low temperature present a more pronounced positive temperature dependence. The rate constants were determined relative to those of the N+OH reaction. Ma *et al.* (5) have performed quantum capture calculations on a new two-dimensional potential energy surface to calculate low-temperature rate constants for the N + CN reaction. These rate constants present a positive temperature dependence in reasonably good agreement with the experimentally determined relative rate values of Daranlot *et al.* (3).

Preferred Values

Rate coefficient (10 - 300 K)k (T) = 8.8×10⁻¹¹ (T/300)^{0.42} cm³ molecule⁻¹ s⁻¹ Reliability $F_0 = 1.4$; g = 1.5

References

- DL Baulch, CT Bowman, CJ Cobos, RA Cox, T Just, JA Kerr, MJ Pilling, D Stocker, J Troe, W Tsang, RW Walker, J Warnatz: J. Phys. Chem. Ref. Data 34 (2005) 757-1397.
- (1) AR Whyte, LF Phillips: Chem. Phys. Lett. 98 (1983) 590-93.
- (2) B Atakhan: 24th Sympos. (Int.) Combustion (1992) 691.
- (3) J. Daranlot, U. Hincelin, A. Bergeat, M. Costes, J.C. Loison, V. Wakelam, K.M. Hickson, Proc. Natl. Acad. Sci., 109 (2012) 10233-10238.
- (4) L.V. Moskaleva, M.C. Lin, J. Phys. Chem. A, 105 (2001) 4156.
- (5) J. Ma, H. Guo, R. Dawes, Phys. Chem. Chem. Phys., 14 (2012) 12090-12093.