Authors: Ian Smith (University of Cambridge, UK) Jean-Christophe Loison (Université de Bordeaux I, France)

$$N(^{4}S) + C_{3}(^{1}\Sigma_{g}^{+}) \rightarrow CN(^{2}\Sigma^{+}) + C_{2}(^{1}\Sigma_{g}^{+}); C_{2}(^{3}\Pi),$$
 (1)

Thermodynamic Data

$$\Delta H^{\circ}_{298}(1) = -54.0 \text{ kJ mol}^{-1}; -45.4 \text{ kJ mol}^{-1}$$

Thermochemical data are taken from ref. (*)

Rate Coefficient Data k

k/cm³ molecule ⁻¹ s ⁻¹	T/K	Reference	Comments
Rate Coefficient Measurements			
No records in the NIST data base			
D			
Reviews and Evaluations			
No information	Baulch et al., 2005	(*)	
1.0×10^{-13}	10 – 300	UMIST database	
1.0×10^{-13}	no T-dependence	OSU website	

Comments

This radical-radical reaction is exothermic. Reaction to the ground $(^1\Sigma_g^+)$ state of C_2 is spin-forbidden. However, reaction to $C_2(^3\Pi)$ is exothermic and spin-allowed. On the other hand, $N(^4S)$ atoms are generally not reactive to other species in singlet states and C_3 is also not very reactive, even to other radicals such as NO and O_2 (Baulch et al. (*)).

If we consider C_3 to be an 'honorary' unsaturated hydrocarbon, then by the 'rules' proposed by Smith et al. (a), this reaction would be slow (N atoms have a negative electron affinity). In agreement with this conclusion, preliminary *ab initio* calculations (b) suggest that there is barrier of *ca*. 1 eV preventing the addition of $N(^4S)$ to $C_3(^1\Sigma_g^+)$.

It seems that this reaction is probably slow at 298 K and very slow indeed at 10 K. The origin of the values of k(T) in the UMIST and OSU data bases is unknown.

Preferred Values

 $k(298 \text{ K}) \le 1 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ k(10 K) = 0

Comments on Preferred Values

We adopt the rate coefficient at 298 K given in previous databases as an upper limit. At 10 K, it seems safe to assume that the reaction has a negligible rate.

References

- (*) D. L. Baulch *et al.*, J. Phys. Chem. Ref. Data **34**, 575 (2005).
- (a) I. W. M. Smith *et al*. Faraday Discuss., **133**, 137 (2006).
- (b) J.-C. Loison, unpublished.

(14.04.2011)