Author:

Ian Smith (University of Cambridge, UK)

 $N(^4S) + C_4N(^2\Sigma_g^{\ +}) \ \rightarrow \ CN(^2\Sigma^+) + C_3N(X^2\Sigma^+) \quad \ (1) \quad \ \ \text{No thermochemical data for C_4N or C_3N}$

Rate Coefficient Data k

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Comments
Rate Coefficient Measurements (k) No measurements were found in the literature			

Reviews and Evaluations

 $\begin{array}{ccc} 1.0\times10^{\text{-}10} & & 10\text{-}300 & \text{UMIST database} \\ 1.0\times10^{\text{-}10} & & \text{no T-dependence} & \text{OSU website} \end{array}$

Comments

This radical-radical reaction is presumably exothermic (but I can find no thermochemical data on C_4N . Reaction is spin-allowed (over triplet PESs). However, the reactants also correlate with quintet PESs.

Preferred Values

Rate coefficient (10 - 300 K) $k(T) = 9.0 \times 10^{-11} (T/300)^{0.17} \text{ cm}^3 \text{s}^{-1}$

Reliability

 $F_0 = 3$; g = 0

Comments on Preferred Values

The UMIST and Ohio databases adopt the same rate coefficient value as for $N + C_2N$. This seems to be a reasonable estimate.

References