Authors:

Jean-Christophe LOISON (CNRS, Bordeaux, Fr) Ian Smith (Cambridge University, UK)

$$O(^{3}P) + CS(X^{1}\Sigma) \rightarrow CO(X^{1}\Sigma^{+}) + S(^{3}P)$$
 (1)

Thermodynamic Data

$$\Delta H^{\circ}_{298}(1) = -360.71 \text{ kJ mol}^{-1}(1)$$

Rate Coefficient Data k

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	
Rate Coefficient Measurements $(2.1 \pm 0.14) \times 10^{-11}$ $(2.24 \pm 0.37) \times 10^{-11}$ $(2.09 \pm 0.22) \times 10^{-11}$ $(2.09 \pm 0.22) \times 10^{-10}$	305 300 298	Slage <i>et al</i> , 1975 Bida <i>et al</i> , 1976 Dodonov <i>et al</i> , 1976	(2) (3) (4)
$(2.6 \pm 0.4) \times 10^{-10} \times \exp(-760/T)$	150-300	Lilenfeld and Richardson, 1977	(5)
Theory			
$1.94 \times 10^{-11} \times \exp(-231/T)$	150-1000	Gonzalez et al, 1996	(6)
Reviews and Evaluations			
$2.7 \times 10^{-10} \times \exp(-760/T)$	150 – 300	Atkinson et al, 2004	(7)

Comments

The reactants $O(^3P) + CS(X^1\Sigma)$ correlate with three adiabatic Potential Energy Surface (PES), one of ³A' and two of ³A". Theoretical calculations (6,8) on this system are a little bit confused. Gonzales et al found that the ³A' PES always lies energetically below the ³A" PES although not far away from it, nonlinear OCS transition states have been found on both surfaces and a very shallow nonlinear OCS minimum, almost not bound if the zero point vibrational energy is included, has been found on the ${}^{3}A'$ PES. On the lowest ³A' PES, they found a small barrier with an energy highly dependent on the method and varying between -0.4 and 7 kcal mol ¹, the best estimate (PUMP4 with BSSE) being around 2 kcal mol⁻¹. However recent DFT calculation using MPWB1K functional lead to an absence of barrier.(8) The high value of the 300 K rate constant, 2×10^{-11} molecule⁻¹ s⁻¹ (four measurements (2-5) in good agreements but using chain reactions) is compatible with either barrier and no barrier in the entrance valley and the only single (also using chain reactions) measurement of the temperature dependence of the rate constant , leading to a 760 K barrier, (5) may be compatible with van der Waals complex and a submerged barrier. One argument in favour of the existence of the barrier in the entrance valley is the semi-empirical "rules" proposed by Smith *et al* (9). The I.E.(CS) minus E.A.(O) is equal to (11.33 - 1.46) = 9.87 eV which is well above the 'critical value' of 8.75 eV proposed to separate 'fast' low temperature reactions from 'slow' low temperature reactions (between radicals and unsaturated molecules). On the following table are summarized the value of IE(molecule)-EA(O) for various O + unsaturated reaction $(E_0^{\#}$ roughly estimated from rate constant T dependency) (10)

Reaction	IE(molecule)	IE-EA	$\approx E_0^{\#}(K)$
O + CO	14.01	12.55	1400
$O + CO_2$	13.78	12.32	>1200
$O + C_2H_2$	11.40	9.93	1600
O + CS	11.33	9.87	760
$O + C_2H_4$	10.51	9.05	500
$O + C_3H_4$	10.36	8.90	960
$O + CS_2$	10.07	8.61	650
$O + C_3H_6$	9.73	8.27	0

If this hypothesis is to be believed for this reaction, it would be slow at low T. So the balances of the arguments are that O + CS will be slow at 10 K. In that case there is no reason to prefer the ab-initio rate constant (6) rather the experimental one.(5)

Preferred Values

 $k (150-300 \text{ K}) = 2.6 \times 10^{-10} \times \exp(-760/T) \text{ cm}^3$ molecule⁻¹ s⁻¹

Reliability

F = 1.3, g = 0 over the range 150-300K g defined by F(T)=F(298)*exp(-g(1/T-1/298))

References

- (1) DL Baulch, CT Bowman, CJ Cobos, RA Cox, T Just, JA Kerr, MJ Pilling, D Stocker, J Troe, W Tsang, RW Walker, J Warnatz: J. Phys. Chem. Ref. Data 34 (2005) 757-1397.
- (2) IR Slagle, RE Graham, JR Gilbert, D Gutman: Chem. Phys. Lett. 32 (1975) 184-86.
- (3) GT Bida, WH Breckenridge, WS Kolln: J. Chem. Phys. 64 (1976) 3296-302.
- (4) AF Dodonov, VV Zelenov, VP Strunin, VL Tal'roze: Kinet. Ctala. 22 (1981) 689.
- (5) HV Lilenfeld, RJ Richardson: The Journal of Chemical Physics 67 (1977) 3991-97.
- (6) M Gonzalez, J Hijazo, JJ Novoa, R Sayos: Journal of Chemical Physics 105 (1996) 10999-1006.
- (7) R Atkinson, DL Baulch, RA Cox, JN Crowley, RF Hampson, RG Hynes, ME Jenkin, MJ Rossi, J Troe: Atmos. Chem. Phys. 4 (2004) 1461-736.
- (8) DA Adriaens, TPM Goumans, CRA Catlow, WA Brown: J. Chem. Phys. C 114 1892-900.
- (9) IWM Smith, AM Sage, NM Donahue, E Herbst, IH Park: Faraday Discusion 133 (2006) 137.
- (10) . kinetic.ch.cam.ac.uk/>.