Author:

Ian Smith (University of Cambridge, UK)

$$O(^{3}P) + NH(^{3}\Sigma^{-}) \rightarrow NO(^{2}\Pi) + H(^{2}S)$$
 (1) $\Delta Hr^{298} = -297.4 \text{ kJ mol}^{-1}$ (*)
 $\rightarrow OH(^{2}\Pi) + N(^{4}S)$ (2) $\Delta Hr^{298} = -95.9 \text{ kJ mol}^{-1}$ (*)

Rate Coefficient Data $k = k_1 + k_2$

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Comments
Rate Coefficient Measurements 6.6×10^{-11} 295 Adamson et al., 1994 (a)			
	295	Adamson et al., 1994	(a)
$k_2 < 1.66 \times 10^{-13}$	298	Hack et al., 1994	(b)
Reviews and Evaluations			
$1.8 \times 10^{-10} \exp(-300/T)$	295 - 3500	Baulch et al., 2005	(*)
$1.8 \times 10^{-10} \exp(-300/\text{T})$ 295 – 3500 Baulch <i>et al.</i> , 2005 (*) $k(298 \text{ K}) = 6.7 \times 10^{-11}$; $k_2 (298 \text{ K}) < 1.7 \times 10^{-13}$ $k_1 = k_2 = 1.16 \times 10^{-10}$ 250 – 3000 UMIST database $k_1 = k_2 = 1.16 \times 10^{-10}$ all temperatures OSU website			
$k_1 = k_2 = 1.16 \times 10^{-10}$	250 - 3000	UMIST database	
$k_1 = k_2 = 1.16 \times 10^{-10}$	all temperatures	OSU website	

Comments

Channel (1) is strongly exothermic and could occur via the ground ($^{1}A'$) state of HNO (and possibly excited states). The reactants correlate with 27 states ($^{5}A' + 2^{5}A''$, $^{3}A' + 2^{3}A''$, $^{1}A' + 2^{1}A''$), the products with 8 states ($^{3}A' + ^{3}A''$, $^{1}A' + ^{1}A''$). Therefore, there is an electronic degeneracy factor of ca. 8/27.

There are scarcely any kinetic experiments on this reaction. The principal aim in the experiments described in (a) was to find the rate coefficient for O + NH_2 . However, the interpretation of the observations to yield the rate coefficient for O + NH is quite direct and appears sound. Hidden in the text the authors propose a branching ration into channel (2) of 7%. They also refer to an earlier measurement by Wagner's group in fair agreement with their value. Ref. (b) reports a very low branching ratio to channel (2) – in agreement with its lower exothermicity and the notion that reaction may occur *via* HNO.

Preferred Values

Rate coefficients (10 – 300 K) $k = k_1$ (298 K) = 6.6 · 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ $k = k_1$ (10 K) = 6.6 · 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ $k_1(T) = 6.6 \cdot 10^{-11}$ cm³ molecule⁻¹ s⁻¹ k_2 (298 K) = k_2 (10 K) = zero

Reliability

 $\Delta \log k (300 \text{ K}) = \pm 0.5$

 $\Delta \log k (10 \text{ K}) = \pm 0.6$

 $F_0 = 3$; g = 2.97

Comments on Preferred Values

The value recommended for $k = k_1$ (298 K) is about what one would get by reducing a collisional rate coefficient by the factor of 8/27. I have assumed no temperature-dependence. I also believe that the branching ratio to channel (2) is likely to be small in agreement with the measurement in (b). I don't know where the values in the data bases come from. I recommend values that are lower by a factor of ca. 2.

References

(*) D. L. Baulch *et al.*, J. Phys. Chem. Ref. Data **34**, 575 (2005).

(a) J. D. Adamson *et al.* J. Phys. Chem. **98**, 5665 (1994).(b) W. Hack, H. Gg. Wagner and A. Zasypkin, Ber. Bunseb. Gesell. **98**, 156 (1994).