Authors:

Jean-Christophe Loison (Univ. Bordeaux, France)

Stephen J. Klippenstein (Argonne National Laboratory, Argonne, USA) Kevin M. Hickson (Univ. Bordeaux, France)

30 November 2014

$$O(^{3}P) + CH_{2}(^{3}\Sigma^{-}_{g}) \rightarrow H_{2}CO(^{1}A_{1}) \qquad \Delta H^{0}_{298} = -820 \text{ kJ mol}^{-1} \text{ (Baulch } et al., 2005)$$

$$\rightarrow H_{2}(^{1}\Sigma^{+}_{g}) + CO(^{1}\Sigma^{+}_{g}) \qquad (1) \qquad \Delta H^{0}_{298} = -751 \text{ kJ mol}^{-1} \text{ (Baulch } et al., 2005)$$

$$\rightarrow H(^{2}S) + H(^{2}S) + CO(^{1}\Sigma^{+}_{g}) \qquad (2) \qquad \Delta H^{0}_{298} = -315 \text{ kJ mol}^{-1} \text{ (Baulch } et al., 2005)$$

$$\rightarrow H(^{2}S) + HCO(^{2}A^{2}) \qquad (3) \qquad \Delta H^{0}_{298} = -489 \text{ kJ mol}^{-1} \text{ (Baulch } et al., 2005)$$

Rate Coefficient Data k

k/cm³ molecule-1 s-1	T/K	Reference	Comments
Rate Coefficient Measurements			
1.3×10^{-10}	390-600	(Vinckier & Debruyn 1979)	
8.4×10^{-11}	298	(Homann & Schweinfurth 198	31)
1.4×10^{-10}	296	(Bohland <i>et al.</i> 1984)	
$k_1 = 1.0 \times 10^{-10}$	1500-2500	(Frank et al. 1987)	
$k_2 = 2.0 \times 10^{-10}$	1500-2500	(Frank et al. 1987)	
Reviews and Evaluations $3.4 \times 10^{-10} \times exp(-270/T)$	300 – 3000	(Baulch et al. 2005) (p. 839)	
Preferred value			
$k_1 = 4.0 \times 10^{-11}$	10-300	$F_0 = 1.6, g = 3$	
$k_2 = 1.0 \times 10^{-10}$	10-300	$F_0 = 1.4, g = 3$	
$k_3 = 2.0 \times 10^{-12}$	10-300	$F_0 = 3.0, g = 3$	

 \overline{k} comprised between k(T)/F and $k(T)\times F$, g defined by $F(T)=F_0\times\exp(g\times |1/T-1/300|)$

Comments

The reactants correlate with singlet, triplet and quintet states. S. Klippenstein performed preliminary CASPT2 scans of the interaction between rigid fragments and found no barrier on both the singlet and triplet electronic surfaces in agreement with expectations for such radical-radical reactions as well as with the high experimental rate constant at room temperature. The rate constant from (Bohland *et al.* 1984) is a direct kinetic study and is likely reliable. The weak temperature

dependency adopted by (Baulch et al. 2005) was designed to fit the (Bohland et al. 1984) room temperature value and the high temperature values from (Frank et al. 1987). This expression may give realistic values above 300 K, but certainly does not at low temperature. Considering the absence of barrier found by S. Klippenstein, we recommend the use of a constant value between 10 and 300 K close to the (Bohland et al. 1984) value. The first step of the reaction is the formation of singlet and triplet H₂CO. Dissociation of the singlet H₂CO

produced can be roughly deduced from H₂CO photodissociation (Zhang et al. 2004, Lee & Lewis 1980), which is supposed to arise from the ground electronic state after internal conversion (so involving only singlet primary competition is The surfaces). between formation of HCO + H and CO + H_2 , the HCO + H formation being favored at high energy. For the $O + CH_2$ reaction there is so much energy in the HCO product that most of it will dissociate (Song et al. 2013, Neyer et al. 1992, Peters et al. 2013, Wang et al. 1973). It is difficult to estimate the amount of HCO produced with less than 70 kJ/mol (barrier for HCO dissociation). Moreover the dissociation of energized HCO has been found to be non-statistical (Never et al. 1992). The amount of non dissociating HCO is likely quite low but even if only 5% of HCO is stabilized k_3 is as high as 5×10^{-12} cm³ molecule $^{-1}$ s $^{-1}$. For the H_2 + CO channel, there is also so much energy that some of the H₂ can also dissociate. Then H + H + CO will be the prominent product. As in interstellar chemistry the branching ratio between H + H and H₂ of the O + CH₂ reaction is not important (H/H₂ ratio is fully driven by H₂ formation on grain) we use the high temperature k₁/k₂ ratio deduced from (Frank et al. 1987) even at low temperature. One critical point is the rate constant for the H + HCO channel which should only account for few percent of the total rate. This reaction could therefore be a minor source of HCO radical under interstellar conditions.

References

- D.L. Baulch D.L., Bowman C.T., Cobos C.J., Cox R.A., Just T., Kerr J.A., Pilling M.J., Stocker D., et al., 2005, J. Phys. Chem. Ref. Data, 34, 757
- Bohland T., Temps F., Wagner H.G., 1984, Ber. Bunsenges. Phys. Chem. , 88, 1222
- Frank P., Bhaskaran K.A., Just T., 1987, 21st Symp. Int. Combustion, 885
- Homann K.H., Schweinfurth H., 1981, Ber. Bunsen-Ges. Phys. Chem, 85, 569
- Lee K.C., Lewis R.S., 1980, Adv. Photochem., 12, 1

- Neyer D.W., Kable S.H., Loison J.C., Houston P.L., Burak I., Goldfield E.M., 1992, J. Chem. Phys., 97, 9036
- Peters P.S., Duflot D., Wiesenfeld L., Toubin C., 2013, The Journal of Chemical Physics, 139, 164310
- Song L., van der Avoird A., Groenenboom G.C., 2013, J. Phys. Chem. A, 117, 7571
- Vinckier C., Debruyn W., 1979, J. Phys. Chem., 83, 2057
- Wang H.Y., Eyre J.A., Dorfman L.M., 1973, J. phys. Chem., 59, 5199
- Zhang X., Zou S., Harding L.B., Bowman J.M., 2004, J. Phys. Chem. A, 108, 8980