Author:

Ian Smith (University of Cambridge, UK)

$$O(^{3}P) + NH_{2}(^{2}B_{1}) \rightarrow HNO(^{1}A') + H(^{2}S)$$
 (1) $\Delta Hr^{298} = -113.7 \text{ kJ mol}^{-1}$ (*)
 $\rightarrow NO(^{2}\Pi) + H_{2}(^{1}\Sigma_{g}^{+})$ (2) $\Delta Hr^{298} = -348.4 \text{ kJ mol}^{-1}$ (*)
 $\rightarrow OH(^{2}\Pi) + NH(^{3}\Sigma^{-})$ (3) $\Delta Hr^{298} = -45 \text{ kJ mol}^{-1}$ (*)

Rate Coefficient Data $k = k_1 + k_2 + k_3$

k/cm^3 molecule ⁻¹ s ⁻¹	T/K	Reference	Comments
Rate Coefficient Measurements $k = 7.6 \times 10^{-11}$	296	(a) Dransfield et al.	all studies use variants of the flow-discharge method and should be quite reliable – in respect of the overall rate coefficient
$k = 6.5 \times 10^{-11}$	295	(b) Adamson et al.	
$k = (1.2 \pm 0.3) \times 10^{-11}$	242 - 473	(c) Inomata and Washida	
Reviews and Evaluations $4.56 \times 10^{-11} \exp(10/T)$ 8×10^{-11}	200 – 3000 no <i>T</i> -dependence	UMIST database OSU website	

Comments

This radical-radical reaction is strongly exothermic and spin-allowed to all channels – though the reactants correlate with quartet, as well as doublet, surfaces.

The values of the overall rate coefficient at 'room temperature' obtained in (a) and (b) are in good agreement; that in (c) is slightly higher but probably within combined errors. Consequently, k can be assumed to be quite well-determined. Reaction probably proceeds through an $\mathrm{ONH_2}^*$ complex whose formation does not require passage over a barrier.

Refs (a) and (b) also agree that (1) is the major channel with k_3 being about 10% of k. There is no experimental indication that channel (2) proceeds at a measurable rate.

Preferred Values

Total rate coefficient (10 - 300 K) $k(300 \text{ K}) = 7.0 \cdot 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $k(10 \text{ K}) = 1.0 \cdot 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $k(T) = 7 \times 10^{-11} (T/300)^{-0.1} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Branching Ratios $k_1 / (k_1 + k_2 + k_3) = 0.9$ $k_2 / (k_1 + k_2 + k_3) = 0.0$ $k_3 / (k_1 + k_2 + k_3) = 0.1$

Reliability

 $\Delta \log k (300 \text{ K}) = \pm 0.3$ $\Delta \log k (10 \text{ K}) = \pm 0.5$ $F_0 = 2$; g = 4

Comments on Preferred Values

I recommend values for the overall rate coefficient similar to those in the UMIST and Ohio compilations. For k(298 K), I take an average of the room temperature measurements in (a) and (b). I assume a mild negative T-dependence.

If all three channels proceed via formation of an energised ONH₂ complex, then the branching ratios are unlikely to have a strong temperature-dependence.

References

- (*) D. L. Baulch *et al.*, J. Phys. Chem. Ref. Data **34**, 575 (2005)
- (a) P. Dransfield, W. Hack, H. Kurzke, F. Temps and H. Gg. Wagner, Sympos. Int. Combust. Proc. **20**, 655 (1985).
- (b) J. D. Adamson, S. K. Farhat, C. L. Morter, G. P. Glass, R. F. Curl and L. F. Phillips, J. Phys. Chem. **98** 5665 (1994).
- (c) S. Inomata and N. Washida, J. Phys. Chem. A 103, 5023 (1999).