Author:

Ian Smith (University of Cambridge, UK)

$$O(^3P) + C_3N(X^2\Sigma^+) \rightarrow CO(^1\Sigma^+) + C_2N(^2\Pi)$$
 (1) No thermochemical data for C_3N

Rate Coefficient Data k

 k/cm^3 molecule⁻¹ s⁻¹ T/K Reference

Rate Coefficient Measurements

No measurements in the literature were found.

Reviews and Evaluations

 4×10^{-11} 10 – 300 UMIST database 4×10^{-11} no *T*-dependence OSU website

Comments

This radical-radical reaction (forming CO) is presumably exothermic and is spin-allowed (over doublet PESs). However, the reactants also correlate with quartet PESs.

Preferred Values

Rate coefficient (10 – 300 K) $k(300 \text{ K}) = 1 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $k(10 \text{ K}) = 1 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ $k(\mathbf{T}) = 1 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

Reliability

 $\Delta \log k (300 \text{ K}) = \pm 0.5$ $\Delta \log k (10 \text{ K}) = \pm 0.6$ $F_0 = 3$; g = 2.97

Comments on Preferred Values

The UMIST and Ohio databases adopt the same rate coefficient value – though it is not clear how they arrive at this value. It seems to me to be slightly low – even allowing for the non-reactive quintet PESs that correlate with the reactants.

References