Authors: D. Talbi (LUPM - Montpellier) and MC. Bacchus-Montabonel (LASIM-Lyon)

$$C+(^{2}P) + S(^{3}P) \rightarrow C(^{3}P) + S+(^{4}S)$$

Thermodynamic Data

$$\Delta H (1) = -88.68 \text{ kJ mol}^{-1}$$
 $\Delta S (1) = \Delta S (2) = \Delta S (2) = \Delta S (2) = \Delta S (3)$

Kc(2) = Kc(2) =

Thermochemical data are taken from ref. 1

Rate Coefficient Data k

$k/\text{cm}^3 \text{ s}^{-1}$	T/K	Reference	Comments
Rate Coefficient calculations			
Kooij formulae	500-5000	1	(a)
Alpha = 5.54×10^{-12} Beta = 0.857847 Gamma = 680.70			
$k (500 k) = 2.2 \cdot 10^{-12}$ $k (1000 k) = 7.8 \cdot 10^{-12}$			
Reviews and Evaluations			
Alpha = 1.5×10^{-9} Beta = 0.0 Gamma = 0.0	10-41000	UMIST database	(*)

Comments

(a) We have performed rate constant calculations for this charge transfer reaction using accurate ab initio methods and semiclassical dynamics that gives reasonably accurate value for the 500-50000 K temperature range. These calculations have been completed by quantum wave packet dynamics in the 0.01-10 eV range. From these

values we have deduced the alpha, beta and gamma coefficients of the Kooij expression. Quantum dynamics have to be performed for the low 10-100 K temperature range. Our calculated values for this process are much smaller than the proposed UMIST value for the high temperatures. (*) The UMIST looks for us overestimated for such a process even at low temperature. The origin of the proposed value

Preferred Values

Until quantum dynamic calculations are performed we suggest a rate constant for the 10 -100 K temperature range of 10^{-10} - 5×10^{-11} cm³s⁻¹

References

1-MC. Bacchus-Montabonel and D. Talbi, 2008, Chemical Phycis Letters, 467, 28-3 2-A. Chenel, E. Mangaud, Y. Justum. D. Talbi, M.C. Bacchus-Montabonel, M. Desouter-Lecomte, 2010, Journal of Physics B, 43, 245701 (11)