Authors:

Jean-Christophe LOISON (CNRS, Bordeaux, Fr),

Pascal Honvault (Université de Franche-Comté, Besançon, France)

$$OH(X^2\Pi) + OH(X^2\Pi) \rightarrow O(^3P) + H_2O(X^1A_1)$$

Thermodynamic Data

$$\Delta H^{\circ}_{298} = -70.3 \text{ kJ mol}^{-1} (1)$$

Rate Coefficient Data k

k/cm^3 molecule ⁻¹ s ⁻¹	T/K	Reference	Ref
Rate Coefficient Measurements			
$k = (3.2 \pm 0.8) \times 10^{-13} \times \exp[(242)/T]$	250-580K	Wagner and Zellner, 1981	(2)
$k = (7.1\pm1)\times10^{-13} \times \exp[(210(\pm40)/T]]$ $k = 2.7\times10^{-13} \times \exp[(446(\pm37)/T]]$	233-360K 220-320K	Bedjanian <i>et al</i> , 1999 Sun and Li, 2004	(3) (4)
$k = (2.7\pm0.9) \times 10^{-12}$ + various measurement at 300K and at 1	298K nigher temperatures.	Bhang and Macdonald, 2007	(5)
Theory			
$k = 6.19 \times 10^{-14} \times (T/273)^{2.62} \times exp[944/T]$	233-2000K	Harding et al, 1988	(6)
Review			
$k = 1.48 \times 10^{-12}$	298K	Atkinson et al, 2004	(7)
$k = 6.2 \times 10^{-14} \times (T/298)^{2.60} \times \exp[945/T]$	200-350K	Atkinson et al, 2004	(7)

Comments

The OH + OH \rightarrow H₂O + O reaction is slightly exothermic (-70.3 kJ mol⁻¹). There is several experimental determinations of this rate constant in the range 220-2000K and at various pressure (apart the OH + OH \rightarrow H₂O + O reaction there is also the three body OH + OH + M \rightarrow H₂O₂ + M (-210.3 kJ mol⁻¹) pressure dependant reaction). From the experimental (3) and theoretical (6,8) works, the various aspect of this reaction is well understood: in a first step there is formation, without barrier in the entrance channel, of a van der Waals complex H₂O₂, not the stable molecule, which can evaluate through a barrier (380K) toward $H_2O + O$. The presence of the barrier explains the increase of the rate constant at high temperature. However there is also an increase between 330 K and 220K resulting in negative temperature dependence due to an increase of the tunneling effect with

decreasing of the temperature (the lifetime of the H_2O_2 adducts increase more quickly than the width of the barrier). The various measurement can been show on this Figure from Bedjanian *et al* (3):

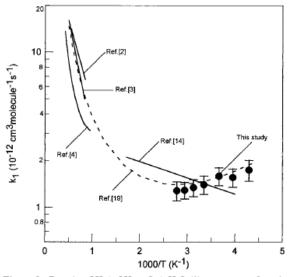


Figure 8. Reaction OH + OH \rightarrow O + H₂O (1): summary of results from temperature dependence studies of the reaction rate constant.

Atkinson et al (7) have fitted the experimental data between 200 and 350 K: $k=6.2\times10^{-14}$ $(T/298)^{2.60} \times \exp(945(\pm 250)/T)$ with $\Delta \log(k) =$ ±0.15 at 298 K (confidence interval of 95%)(Atmos. Chem. Phys. 4 (2004) p 1514) equivalent to $F_{298} = (10^{\Delta \log(k)})^{0.5} = 1.2$ (in KIDA we use 1σ uncertainty) and g = $0.5 \times \Delta E/R = 125$. However, this expression can't be extrapolated at very low temperature (it's give $k(10K)=1.2\times10^{+24}!!!$). The rate constant is certainly higher at low temperature as the lifetime of the adduct is certainly very long at very low temperature. To have a precise value, we need to do additional calculations. However the high pressure limit of the rate constant for the $OH + OH \rightarrow H_2O_2$ $((2.6 \pm 0.8)\times10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1},$ practically independent of temperature.(9,10)) can be considered as an upper limit for the $OH + OH \rightarrow O + H_2O$.

Preferred Values

T=200-350K:

$$\begin{split} k(T) &= 6.2 \times 10^{-14} \times (T/273)^{2.62} \times exp(945/T) \text{ cm}^3 \\ \text{molecule}^{-1} \text{ s}^{-1} \\ \text{Reliability} \\ F &= 1.2 \quad g = 125 \\ \text{g defined byF(T)=F(298)*exp(-g|1/T-1/298|)} \\ (F &= 10^{\Delta log(k)})^{0.5} (95\% \text{confidence}) \text{ or } F_{298} = \\ (10^{\Delta log(k)})^{0.5} (1\sigma \text{ uncertainty})) \end{split}$$

10K:

 $\overline{k(10\text{K})} = 1.0 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ Reliability

F=3

Comments on Preferred Values

In the 200-350 K range there various coherent experimental measurements as well as theoretical study(6).

Even if there is no measurement at temperature below 200K, as there is no barrier for the H_2O_2 van der Waals complex formation and the tunneling more efficient with a lower energy in this complex, the rate constant is certainly higher than $2.0\times10^{-12}~\text{cm}^3.\text{molecule}^{-1}.\text{s}^{-1}.$ The high pressure limit of the rate constant for the OH + OH \rightarrow H₂O₂ ((2.6 \pm 0.8)×10⁻¹¹ cm³ molecule⁻¹ s⁻¹) can be considered as an upper limit for the OH + OH \rightarrow O + H₂O.

References

- (1) DL Baulch, CT Bowman, CJ Cobos, RA Cox, T Just, JA Kerr, MJ Pilling, D Stocker, J Troe, W Tsang, RW Walker, J Warnatz: J. Phys. Chem. Ref. Data 34 (2005) 757-1397.
- (2) G Wagner, R Zellner: Ber. Bunsenges. Phys. Chem. 85 (1981) 1122.
- (3) Y Bedjanian, GL Bras, G Poulet: J. Phys. Chem. A 103 (1999) 7017.
- (4) H Sun, Z Li: Chem. Phys. Lett. 399 (2004) 33-38.
- (5) M-K Bahng, RG Macdonald: J. Phys. Chem. A 111 (2007) 3850-61.
- (6) LB Harding, AF Wagner: 22nd International Symposium on Combustion (1988) 983.
- (7) R Atkinson, DL Baulch, RA Cox, JN Crowley, RF Hampson, RG Hynes, ME Jenkin, MJ Rossi, J Troe: Atmos. Chem. Phys. 4 (2004) 1461 738.
- (8) SP Karkach, VI Osherov: J. Chem. Phys. 110 (1999) 11918.
- (9) R Forster, M Frost, D Fulle, HF Hamann, H. Hippler, A Schlepegrell, J Troe: J. Chem. Phys. 103 (1995) 2949.
- (10) D Fulle, HF Hamann, H Hippler, J Troe: J. Chem. Phys. 105 (1996) 1001.